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Aerodynamic Sensitivity Theory for Rotary Stability Derivatives

A. C. Limache*and E. M. Cliff"
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

A nonlinear boundary-value problem (BVP) is developed to describe the steady compressible flow about a
body moving with nonzero angular rates. It is shown that the most general aerodynamically steady motions are
characterized by spiral paths. A continuous sensitivity equation method is then applied to develop a linear BVP
that characterizes the sensitivity of the flow to changes in angular velocity. The solutions to the sensitivity BVP
are used to compute rotary stability derivatives and comparisons are made to some existing methods. The virtue
of this approach is that all rotary derivatives can be estimated based on a single solution for the nonlinear flow

equations along with three linear sensitivity equations.

Nomenclature

C,, C4, C,, = lift, drag, and pitching moment coefficients

e, E = internal energy, total energy per unit mass

é = unit vector

F,.H = components of conservative flux vector

F = steady aerodynamic force function

F = aerodynamic force functional

f = body force vector

M = Mach number

M = pitching moment

P, T = pressure, temperature

D.q,T = body roll rate, pitch rate, yaw rate

0 = conservative flow variable

R, R, = gas constant, radius of circular path

R = general (noninertial) reference frame

Sys Sq, 8w = flow sensitivity with respectto 7, ¢, and u,
respectively

S = inertial reference frame

t = time

u,v,w = flow velocity components

V,a = speed, acceleration

w = source terms

X, ¥,2 = Cartesian coordinates

x,V,a = vector position, velocity and acceleration,
respectively

o = angle of attack

B = angle of sideslip

y = ratio of specific heats

n = generic physical parameter

P = air density

T = temporal variable

T = shear tensor

Q = inertial body force

w, ® = angular velocity vector, its magnitude

Subscripts

c = predetermined point of the aircraft (usually the

center of mass)
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q,q = dimensional and nondimensional pitch rate
stability derivatives

R,S = reference frame (R or S) in which the variable is
measured

RIS = origin of reference frame R as seen from reference
frame S

X, 9,2 = Cartesian components

a = stability derivatives with respect to angle of attack

Superscript

00 = far-field conditions

Introduction

HE mechanics of atmosphericflight remains an interestingand

challenging subject, in part because flight vehicles present a
number of complex dynamical components. In the present study
computational fluid dynamics (CFD), based on compressible steady
flows, is used to model the external aerodynamic forces and mo-
ments on rigid aircraft. A continuous sensitivity equation method is
used to developalinearboundary-valueproblem (BVP) thatdirectly
leads to aerodynamic stability derivativesintroduced by Bryan (see,
for example, the discussion in McRuer, et al') and discussed more
recently by Tobak and Schiff.? In particular, the focus is on models
that describe how the aerodynamic forces and moments depend on
angular rates of the rigid aircraft.

The basic idea is that of a sensitivity: loosely, a linear approx-
imation of a nonlinear function. The functions of interest are the
maps that associate a flowfield with parameter values. For example,
it is shown how one can associate a unique flow solution around
an airfoil with each value of its pitch rate. In general, the flowfield
is described as the solution of a nonlinear BVP and the parame-
ter(s) could appear in the partial differential equation and/or in the
boundary conditions. A model for the flowfield sensitivity is for-
mally derived by implicit differentiation of the nonlinear BVP. The
sensitivity method has previously been applied to the calculation of
static aerodynamic derivatives’ and to geometric design analysis for
chemically reacting flows.* This work extends the approach to the
estimation of rotary aerodynamic derivatives.

It is useful to discuss the fluid mechanical models as seen from
noninertial reference frames (an inertial reference frame is a refer-
ence frame in which Newton’s laws hold). This leads to a nonlinear
BVP consisting of a nonlinear partial differential equation (PDE)
and appropriate boundary conditions. In principle, these equations
can be solved by a CFD algorithm, and the associated aerodynamic
forces and moments on the body computed by certain weighted sur-
face integrals of the local normal (pressure) and traction forces. It
will be seen that the body angular rates appear as coefficients in
the nonlinear BVP. The nonlinear BVP is formally differentiatedto
generate a linear BVP for the flow sensitivity; this flow sensitivity
reflects the way the flow variables will change due to a change in
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the physical parameter. These ideas are applied to determine rotary
stability derivatives by choosing the parameter to be the pitch rate.
These rotary stability derivatives are computed by a weighted inte-
gral over the body surface of the pressure sensitivity.

Preliminary Remarks

From a flight mechanics point of view, one is interested in a de-
scription of the aerodynamic forces acting on a flight vehicle. A
mathematical model for these forces can be developed in terms of a
nonlinear PDE with boundary conditions for the PDE that include
appropriateconditions at the fluid/vehicle interface. With this struc-
ture in mind a generic aerodynamic force is expressed as

F(t) = F(V(1), a(7), B(2), p(7), 4(7), r(7), 1) o))

where 7 is a temporal parameter going from —oo to time ¢. This
functional form indicatesthat the aerodynamic forces depend on the
history of the dynamic variables: speed V.., angle of attack a, angle
of sideslip 3, and the angularrates p, ¢, and r defining the particular
trajectory of the aircraft. The idea that the aerodynamic forces are
described by a functional and depend on the past history of the
motion was noted by von Kdrman and Burgers.> The classic works
of Theodorsen® and Jones’ provided approximate representations
for this functional in the case of incompressible flow about a thin
airfoil. More recently, Herdman and Turi® have rigorously studied
a representationbased on neutral functional differential equations.

It is certainly possible, within some limitations, to generate nu-
merically time-accurate CFD solutions to determine the aerody-
namic forces acting on an aircraft. This has been demonstrated for
flow models based on vortex-lattice methods.

More commonly, CFD approaches are restricted to the special
case wherein the aircraft is in steady, rectilinear, wings-level flight,
that is, when the aircraft is flying at constant values of V., a, and
B and with zero angular rates. In this case (assuming a steady flow
exists) the aerodynamic forces are constantand Eq. (1) reduces to

F=F\V,ap000) 2)

Note that the first six arguments of the functional F in Eq. (1) are
real-valued functions, whereas the corresponding arguments of F
in Eq. (2) are real numbers.

In the present study, the class of steady motions is generalized to
include motions with nonzero angular rates. This requires extend-
ing the standard CFD formulation to general noninertial reference
frames.

Fluid Motions in Noninertial Frames

In subsequentdiscussionsit is assumed that the reader is familiar
with relations among the various (relative) positions, velocities,and
accelerations. This material may be found in standard references,
such as those of Etkin'® or Miele.!!

Consider two observers, one located at the origin Og of a coor-
dinate system defined in an inertial reference frame denoted by S
and the other observer located at the origin O of a coordinate sys-
tem defined in a general reference frame denoted by R. At a given
time ¢, the observerin the general reference frame R will be located
at a positionxg,s(t) with respect to S and will be moving with a
velocity

dxgrss
VRis(t) = ——
e |g
and an acceleration
dVgr,s
ars(t) = ——
e |

with respect to S. Furthermore, at the same time, the frame R may
be also rotating with instantaneous angular rate w(t) with respect
to the inertial frame S.

The equations that govern the fluid motion as seen from the ob-
server in the noninertial frame R are a generalization of the formu-
lation given by Hirsch!? (see page 16 and those that follow).

Equation of conservation of mass or continuity equation

op _
§+V-(PVR)—0 (3)

Equation of conservation of momentum

BVR . pVReVR+P I =] = plf + Q=20 xVR] (@)

Equation of conservation of energy

E
ap—+V [(pE+P)VR—T VR —k;VT]=p[f+<Y- Vg +q,

ot
)

In Egs. (3-5), the variablesare expressedin a Eulerian (local) way
as seen from the noninertial rotating frame R. In this sense, Vg is
the local velocity of the flow as seen from the rotating reference
frame, and E is the total energy (per unit of mass) as seen from the
rotating frame:

E=e+éVR-VR

Also, f is net body force and € is the pseudoforce vector
dw
Q=—-w X(w XxR) - E XXR —aRr;s

that contains the effect of the noninertial motion (except for the
Coriolis term —2w X V). V® V is a second order tensor defined
in terms of its components in Cartesian coordinates as [V ® V],-.,» =
[VI:[V];, where [V]; is the ith component of the velocity vector.’
is the identity tensor and 7 is the stress tensor; each of these is a
second-order tensor.

In the following, the subindex R is dropped from the velocity
Vr, the position vector x, and the unit vectors é,z, é,r, and &.x
because unless otherwise specified all quantities are referred to the
noninertialframe R. The vectorsx, Vi, w, and €, when resolved
in terms of their components in the noninertial frame R, will be
written simply as

x =xé, +ye, + zé, V =ué, +veé, +we,

w =pé, +qé, +re, Q=0c¢ +0e0 +Q2

respectively.

Conservative Form of Two-Dimensional Flows
in Noninertial Frames
For the case of a two-dimensional flow in the x, z plane, w is re-
duced to w =gé,. Additionally,assuming an inviscid, nonconduct-
ing fluid, the flow equations (3-5) can be written in the Cartesian
coordinate system x, y, z of the noninertial reference frame R in
the compact form

F H
900 0

S ¢ /4
ot ox 0z
where
[0 P
0, pu
0 pw
| Q. pE
is the vector of conserved quantities,
pu ]
F puu + P pwu
- puw ’ pww + P
u(pE + P)_| w(pE + P)
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are the componentsof the inviscid fluxes, and W, under the assump-
tion of no external forces, is given by

0

pL, — 2pgw 7
pL2; + 2pqu

pQu + pQw

It can be seen that the form of the flow equationsin the noninertial
frameisidenticalto the formin aninertialreference frame exceptfor
the additional source term W. By the use of this fact, a conservative
formulation is developed in exactly the same way as in CFD for
flows in inertial reference frames. In particular, observe that the
fluxes F and H can be written in conservative form as

_ 0, _
03 01+ Q%)
—_— — 1 _——
0 T )<Q4 T
F = 0,05 8)
0,
0, (r - (03 +Q3)
0, (w“ 20,
_ 0, _
0,0,
0,
H=| 2%, _, _9+ 0 ©)
0, +(r -1 <Q4 20,
0, (r -1 (Q3+Q3)
0, (w“ 20,

A similar fact is true for the pressure P, that is, for a calorically
perfect gas one can write

P =(y = 1DQ(Qs/ Q1 = 1[(Q2/ 0 + (25/01)])

These expressions are identical to the relations of the thermody-
namic variables and fluxes in terms of conservative variables in
inertial frames. The differencelies in the source term W. By the use
of Egs. (6) and (7), the source term can also be expressed completely
in terms of the conservative variables and the variables describing
the motion of the reference frame, namely,

0

019, =290
W= 10
0142 + 290> (1o

0,0, + Q.0

Boundary Conditions

The boundary conditions along solid walls are different for
Navier-Stokes (viscous) flows and for Euler flows. In the former
case, the velocity of the flow vanishes at solid walls, whereas in the
case of Euler flows, there is no flow through the wall, that is,

V-i=0

In general, the boundary conditionsapplied at the far-field bound-
ary are the same for Navier-Stokes and Euler flows. Many of the
physical boundary conditions in external flows are of the type of
matching with given far-field conditions O, that is,

i, €5 =25
where the subscript S indicates that the values of the flow variables
at the far field are defined as seen from the inertial frame S. How-
ever, because certain thermodynamic variables, density p, pressure

P, temperature T, entropy s, internal energy e, and the speed of
sound a, are scalar quantities, they are independentof the reference
frame. [Note that the speed of sound a = /(3 P/ dp), is also a ther-
modynamic property of the state of fluid. For a thermally perfect
gas,a = /(y RT).] This implies that

lim f(x) = f*

llxll = oo

where f is replaced by any of the symbols {p, P, T, a, e}.

The only variable that requires special care is the flow velocity
that depends on the reference frame because it is a vector quantity.
The velocity of interest is as seen from the noninertial reference
frame R:

lim V(x) = lim Vs(x) - Vg/s —w Xx

llxll — oo llxll — oo

In the case where the unperturbed air is at rest in the inertial frame
S, this simplifies to

lim V(x) =-Vg,s— lim w Xx

llxll — oo llxll— oo
which written in components reads

u —ur;s —(qz —ry)
—VRiS — (rx — pz) (1D
—-wriS — (py — gx)

Iim (v [ = lim

llxll— oo llx]l— o

From these one can deduce the far-field conditionsfor the conserved
variables, which are applied computationally at large ||x||, for ex-
ample, ||x|| equals 20 chord lengths.

Kinematics of Steady Motion

The property of steadinessin a fluid motion depends on a number
of issues including the choice of observer. Commonly, the vehicle
is translating at a constant velocity without rotating, and one uses
a Galilean transformation to view the fluid motion from the pilot’s
point of view; in this setting, the vehicle is in a steady motion. In
the following this resultis generalized to include rotational motion.

Consider the vector V.. that describes the translational velocity of
a specified point on the aircraft (usually the center of mass) with
respect to a fixed observer in the inertial reference frame S, where
the undisturbed air is assumed to be at rest. Note that the quantities
V., o, and B are scalars so that their rates of change are independent
of the reference frame. For vector quantities, such as V., the rates of
change in two reference frames are related by the standard Eulerian
formula

av,
dr

|2

+wXV. (12)
dr

S R
where w is the angular velocity of frame R with respectto frame S.

For an aerodynamically steady motion the aerodynamic angles o
and B must remain constant and this implies 1) that the orientation
of any body frame is fixed with respect to the wind-frame and 2)
that the velocity of the body frame with respect to the inertial frame
is a fixed vector in the body frame.

From the first, one deducesthat the body frame and the wind frame
have the same angular velocity with respect to the inertial frame.
Furthermore, in a steady motion, the components of the angular
velocity are constant, and this implies that dw/df =0.

The second conclusion means that

dv.
dr

=0
R
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and this, combined with Eq. (12), leads to a simple system of linear,
constant-coefficient, ordinary differential equations for the compo-
nents of V, in the inertial frame:

dv.
dr

=w XV. (13)
S

System (13) can be integrated to yield

ucs(t) w0\ w w0\ w
ch(t) = (VCO - g)g + |:VCO - (VCO : g>5i| COS((X)t)

ws(t)

+ (% ><ch> sin(or) (14)

A second integration gives the inertial-frame position components
as

xcs(t) Xeo
w w
ycs(t) =Yoo | + (VCO - _> <_>t
w w

ch(t) 2c0

+ |:Vco B (Vco ] ﬁ) £i| sin(wt) B (ﬁ % VcO) cos(wt) (15)
o) o o ® ®

Equations(14)and(15) are a parametric descriptionof a spiral. Note
that Eq. (14) includes a constant component along the direction
e,= w/w and a harmonic part. The constant vector multiplying
cos(wt) in Eq. (14) is the orthogonal complement of the constant
part, whereas the constant vector multiplying sin(wt) is orthogonal
to the plane spanned by {V,, e, }. The magnitude of the vectors
in the harmonic part are, in fact, equal. This means that such spiral
motions are the most general motion of an aircraft for which a steady
description is possible. For a related discussion, see the classical
book by von Mises.'?

Two-Dimensional Steady Motions

As an example of the general formulationjustdescribed, attention
is restricted to the forces on an airfoil in inviscid flow. In the usual
case the airfoil is in simple rectilinear motion with zero angular
rates. Obviously, the flow will be two dimensional, and a standard
CFD code for steady flow can be used to determine the aerodynamic
forces [cf. Eq. (2)].

F=F(V., 00,000 (16)

In particular, the lift C;(M, a), drag C,(M, a), and pitching mo-
ment C,,(M, a) coefficients can be calculated for different values
of speed (or Mach number M) and angle of attack. Examples of
these calculationusing CFD are shown in Figs. 1 and 2 fora NACA
0012 airfoil. The general streamline pattern and the pressure con-
tours are shown fora Mach number M =0.1 (Fig. 1) and for a Mach
number M =0.8 (Fig. 2) atangle of attack o = 0. The CFD program
that was used here is referred to as the Class Code; it is based on a
finite volume formulation on unstructured grids and was provided
by Kyle Anderson from NASA Langley Research Center.

Observe that with this code one could determine the stability
derivatives (C,,_, Cy,, C,,. K€ {M, a}) of the aerodynamic forces
and moments with respect to the angle of attack o and flight Mach
number M (or speed V,) by finite differences. For example, C;,
could be calculated by using two flow solutions so that

C/a = [C/(M, a+ AOC) - C/(M, OC)]/AOC

Alternatively, such static aerodynamic stability derivatives can be
evaluated by a sensitivity equation approach, as done by Godfrey
and Cliff.? The sensitivity approach is computationally cheaper in
the sense that it will require only one nonlinear flow solution plus
solvingalinear PDE, instead of the two nonlinearsolutionsrequired
in finite differences.

On the other hand, because the Class Code and the sensitivity
formulation developed by Godfrey and Cliff® are both based in an

L
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Fig. 1 Pressure contours and streamlines for flow around a NACA
0012 airfoil at M = 0.1 and « = 0.0 deg.
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Fig. 2 Pressure contours and streamlines for flow around a NACA
0012 airfoil at M = 0.8 and o = 0.0 deg.

inertial formulation, where the airfoil is not allowed to pitch, neither
can be used to evaluate the pitch-rate derivatives Gy, C,,, and C,,,, .
To estimate such terms, it is necessary to account for the possibility
of nonzero pitch rates g by finding the appropriate steady motion of
the airfoil in a planar motion but with nonzero pitch rates.

Note that the general steady motion discussed in the preceding
section can be restricted to the case where w and V|, are orthogonal.
In this case, Eq. (15) reduces to (modulo the initial position)

x:5(1) v w Vv

yes() | = (—CO> sin(wt) — (— X —CO> cos(wt)
® ® ®

Z.s(t)

Moreover, the constant vector multiplying sin(w?) has the same
magnitude as that multiplying cos(w?) and is orthogonal to it. It is
clear that the motion is planar, and in fact it follows a circular path,
as shown for the aircraft in Fig. 3. In this case the motion has the
following features:

1) The radius of the circular path R, is related to the pitch rate
and the speed of the aircraft through V. =R q.

2) The aircraft experiences a centripetal acceleration

a. =V /R,
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A

s SR

Fig. 3 Aircraft flying in a circular path with constant pitch rate ¢ and
constant angle of attack a.

which is normal to the velocity vector. This guarantees that the
aircraftis not changing its speed.

3) From the pilot’s view the flow motion is steady.

However, the use of the standard (inertial) CFD equations is not
valid. The two-dimensional CFD formulationin general noninertial
reference frames, as described earlier, is needed. This generalized
two-dimensional CFD formulation is also used to develop a sensi-
tivity formulation for the calculation of rotary stability derivatives.
The case of planar motion that only can be applied to calculate sta-
bility derivatives with respect to a pitch rate g is considered. The
ideas presented can be extended to the three-dimensional case to
calculate the whole set of rotary derivatives, that is, derivatives in
roll p, pitch ¢, and yaw r.

Flow Sensitivity Equations

In this section the equations for the flow sensitivities with respect
to a general parameter 1 is described. The parameter could modify
the far-field conditions, the flow equations, or both. For simplicity
it is assumed that the parameter does not modify the shape of the
aircraft or any other boundary geometry, and attention is restricted
to two-dimensional Euler flows, that is, the fluid is inviscid and
nonheat conducting.

Because the state of a two-dimensional Euler flow is completely
defined in terms of the four conserved quantities (6), then the sensi-
tivities §,, of the conservedquantities Q withrespectto the parameter
n will be a vector with four components:

[00:(x, 5517
on
Soi 00,(x, ;M)
SHZ 0 an
=8, =—0@x,1n) = 17
Si3 T o 00;5(x, t; M)
S on
00,(x, ;)
L on _

From the flow equations it is possible to determine the differential
equation satisfied by the sensitivity vector S,,.

Observe that if the sensitivities of the conserved variables are
known, then the sensitivities of any of the primitive variables

{p, P,e, T,u,w} can be calculated. For example, the sensitivity
S, of the x component of the velocity can be determined from

u_20:/0,
on~ on

__0:00,, 120

Sll = 2
Q7 on Q) on

Note that the flux functions F' and H depend explicitly on Q
only. The dependence on x, ¢, and 1 is through the chain rule. The
source-term W may depend on 1 explicitly, as well as implicitly
through Q. Taking the derivative of the flow equation with respect
to the parameter 1, one finds

200+ 2 ro+ 22 h0) = 2wio.
ol T oy (@ 5 A = W)

Because the spatial coordinates x and the time ¢ are independent
of the n parameter, and assuming certain smoothness, the order of
differentiationcan be interchanged

0

w;n (18)
on

0 0
—— 0+ ——F(Q)+——H(Q) =
0z 0n

Differentiating flux expression (8) with respect to 11 by using the
chain rule leads to

4 T — 12
a—nF[Q(x,t,n)]—VQF an(x,t,n)

where V, F is the Jacobian of F with respect to the conserved
quantities Q. Similar expressions for the conservative flux H can
be derived, and using definition (17), Eq. (18) is rewritten as

o8, 0 0 0
— 4y [V, F-S]1+—[V,H-S]=—W(O:
5 Vel S aZ[VQ 0l on (@:m (19)

For the term (3/0n)W(Q; 1), Eq. (10) is formally differentiated:

0 0
an an aQX. aq
— Q0 - 2q— Z 02—
3 q on 0, on anQ3
—W =120, 20, | + 20 dq
d —=Q +2q—= — +2—=
n 3 7 on 0, on aan
d d 202, 202,
022, 0% — 0, +—0;
L "o on | Lon on

As a consequence,

0
a—nW[Q(x, t;n);nl = WalQx, t;m);nl- Sy + We[Q(x, t; m); 1]

(20)
where
T0 0 0 0]
wagim=|2 0 0 @1
AW =10 2 0 o0
L0 @ o o]
and
_ 0 _
202, aq
— =
0, o aan
Ws(Q;n) = 00, oq (22)
g 0— +2—=0,
0 on
202, 202,
R + —
L on 2 on Q3_
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With the substitution of Eq. (20) into Eq. (19), it follows that the
sensitivities S, satisfy

oS, 0 0

a—t” + a—x[VQF- S,1+ a_z[VQH S =W, S, + Wy (23)
If this is solved with the appropriate boundary conditions, the flow
sensitivity S, can be determined. Whereas equation (23) may seem
complicated, it is, in fact, a linear PDE. Observe that the Jacobians
Vo F and Vy H are known functions of the flow solution and inde-
pendent of the sensitivities, as are the matrices W, and Wp.

Rotary Stability Derivatives

As an example of the use of the sensitivity equation method in
flight mechanics, the flow sensitivity with respect to the pitch rate
is determined. From Eq. (23) the sensitivity vector for the pitch rate
q satisfies the linear PDE,

s, @ d
— + —[VyF-S,]+ —[VoH-S,1=W,-S, + W, 24
ot ax[Q q] aZ[Q q] A q B ( )

where W, is givenby Eq. (21) and W;(Q; ¢) from Eq. (22) is given
by

0
202,
oq

Wi(Q: ) = Ql% 420, (25)

0, —203

20, 20,
27 0, 27 03

The general vector relationship for Q is
dw
Q= —w X (w XxR) - 5 X¥R —awrss

and for the two-dimensional case treated here, this reduces to

Q, q*x —qw,
Q|| ¢z +qu,
Thus, expression (25) becomes

0

L Q1(2qx —w.) =203
We(2:9) = 01(2qz + u,) +20, 26)

(2gx =w) Qo + (292 + u) Qs

Note that, when calculating the pitch-rate derivativesin the case
of steady, straight, and level flight (p =q =r =0), the term W,
vanishes and Wy in Eq. (26) reduces to

0
| mQiwe =20,
W5(0:0) = Quu. +20,

_WCQ2 + u. Q3

Once the linear problem posed by Eq. (24) is solved, the pressure
sensitivity 0 P/0q is available at any point in the flowfield. In the
case of Euler flows, this is sufficient to calculate the sensitivities
of each of the aerodynamic forces and moments with respect to
the pitch rate. For example, the pitching moment is computed by
the following weighted integral of the pressure P around the body
surface X :

M = /[x X —Pi],do
z

It follows then that the sensitivity of the pitching moment with
respect to the pitch rate (3M/ dq) is given by

M _ _/ [E}[x x il, do 7)
oq s | 9g ’

Observe that all of the proceduresused to compute the aerodynamic
forces can be used to compute their sensitivitiesby simply replacing
the pressure by the pressure sensitivity.

Numerical Results: Pitch-Rate Sensitivity

A solution procedure for the two-dimensional sensitivity equa-
tion (24) was implemented using a finite volume formulation. The
NISFLOW code can calculate sensitivities with respect to the angle
of attack o, the Mach number M, and the pitch rate g. The same
unstructured grid that was used for the flow solution was used to
compute the flow sensitivities. Note that, although it may be con-
venient to solve the sensitivity equation using the same scheme and
discretizationas for the nonlinear flow, it is not necessary to do so.
Indeed, when using adaptive grid technology, one should be aware
that an acceptable refinement for the flow problem may not be ac-
ceptable for the sensitivity problem.'*

Figures 4-7 show some of the pitch-rate flow sensitivitiesresults
for the case of a NACA 0012 airfoil at several different Mach num-
bers and at o =0.0 deg. The calculations were performed around
q =0, so that the flow solutions required to calculate the source
term Wy and the Jacobians of F' and H in the sensitivity equation
were simply extracted from the Class Code. This implies that for
the required flow solutions a standard (inertial) CFD formulation
can be used. The origin of coordinates of the body-fixed reference
frame was chosen to be at the leading edge.

In Fig. 4 the pitch-rate pressure sensitivity contours and the ve-
locity sensitivity streamlines are shown for a NACA 0012 airfoil
at M =0.1; these flow sensitivities were computed using the flow
solutionshownin Fig. 1. The pressure sensitivitiesmeasure how the
pressure is going to vary if the airfoil tends to rotate nose up (posi-
tive ¢). Similarly, the velocity sensitivity streamlines indicate how
the velocities are going to change if the airfoil tends to move nose
up. Observe that for a positive g the pressure tends to decrease on
the airfoil’s upper surface while it tends to increase on the lower sur-
face. From this we expecta positive (upward) C,, . From the velocity
sensitivity streamlines, we see that near the upper surface the flow
tends to accelerate while in the lower surface tends to decelerate;
also the stagnation point tends to move to the lower surface.

In Fig. 5, a zoom-out of the sensitivity field is shown to display
the pressure sensitivity and velocity sensitivity streamlines in the

Fig. 4 Pitch-rate pressure sensitivity contours and velocity sensitivity
streamlines for a NACA 0012 airfoil at M = 0.1 and o = 0.0 deg.
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Fig. 5 Pitch-rate pressure sensitivity contours and velocity sensitivity
streamlines for a NACA 0012 airfoil at M = 0.1 and « = 0.0 deg (wide
view).

0.5

Fig. 6 Pitch-rate pressure sensitivity contours and velocity sensitivity
streamlines for a NACA 0012 airfoil at M = 0.5 and « = 0.0 deg.

far field. Observe that the pressure sensitivity goes to zero at the
far field. This is expected because airfoil pitch motions should not
change the air pressure in the far field. Also observe that the sen-
sitivity streamlines tend to be concentric circles with center at the
origin of coordinates, that is, at the airfoil’s leading edge. This phe-
nomenon is also expected and can be proved mathematically by
differentiating the boundary conditions (11) with respect to g. Ob-
serve that for a positive pitch g, thatis, a pitch in the clockwise sense
the far-field sensitivity streamlines run counterclockwise.Note that
the finite volume sensitivityformulationallows one to treat the range
of subsonic, supersonic, and transonic speeds. In Figs. 6 and 7 the
pitch-rate pressure sensitivity and the pitch-rate velocity sensitivity
streamlines of the same airfoil are shown but at the higher Mach
numbers M =0.5 and 0.8, respectively. The main features of the re-
sulting pressure sensitivity and velocity sensitivity streamlines for
the case M =0.5 are similar to the low subsonic case.

The case M =0.8 corresponds to a transonic flow. In particular,
as shown in Fig. 2, at @ =0.0 deg, a shock exists on both the upper
and lower surfaces of the airfoil, and by symmetry the shocks are
located at the same location along the chord. From the corresponding
pressure sensitivity shown in Fig. 7, it can be seen that on the upper

Table1l Computed pitch-rate derivatives

Coefficient NISFLOW QUADPAN VORLAX

M=0.1
G, 10.337 10.097 9.425
Cin, —3.489 —3.424 -3.151
M=0.5
G, 11.847 11.314 10.792
Cn, —3.968 -3.825 -3.611
M=0.38
G, 21.889 15.713 15.408
Cin, —8.884 -5.333 -5.167

-0.5 0 0.5 1 1.5

Fig. 7 Pitch-rate pressure sensitivity contours and velocity sensitivity
streamlines for a NACA 0012 airfoil at M = 0.8 and o = 0.0 deg.

surface, between the leading edge and some distance before the
shock location, the expected change in pressure is a more or less
uniform pressure drop. On the lower surface, the expected change
is a more or less uniform pressure increase. On the other hand, on
the upper surface, near the shock location the expected change is
a large pressure drop. This is an indication that the shock moves
toward the trailing edge. The opposite phenomenon occurs on the
lower surface where the pressure sensitivity is large and positive.
This means that the lower-surface shock moves toward the leading
edge.Note thatthe antisymmetryobservedin the pressuresensitivity
contours with respect to the x axis is a special phenomenon that
only occurs at o =0.0 deg due to the symmetry of the airfoil and
the symmetry of the flow solution at that angle of attack.

Table 1 shows a comparison of the nondimensional pitch-rate
derivatives C;, =0C,/0g and C,,, =09C,,/ 9§ obtained for the three
different Mach numbers, M =0.1, 0.5, and 0.8, at a =0.0 deg.
The nondimensional pitch rate § is defined to be § =¢¢/2V. and,
for example, the pitch-damping parameter C,,, is computed by
nondimensionalizing the pitch moment sensitivity [Eq. (27)] in
the usual way. To validate the results, Table 1 also shows the
same aerodynamic derivativescalculated using QUADPAN'>!® and
VORLAX,!” which are panel methods and were developed at Lock-
heed. Both methods are based on potential flow formulations to
estimate the local velocity, and they recover the pressure from ap-
proximations to the isentropic, compressible Bernoulli equation.

The results show good agreement between QUADPAN and NIS-
FLOW at M =0.1 and 0.5. The differencein C;, is around 2-3% at
M =0.1 and increases to 4-5% at M =0.5. For C,,, the difference
is less than 2% at M =0.1 and increases slightly to less than 4% at
M =0.5. This small difference may be due to inaccuracies of the
discretization and/or to the differentapproachesused in simulating
the pitching motion effect. The estimates at M =0.8 are quite dif-
ferent. One explanation is that VORLAX and QUADPAN cannot
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model embedded shocks, whereas it is clear from the flow solution
(see Fig. 2) that at M =0.8 there is an embedded shock. In addi-
tion, the NISFLOW results shown in Table 1 have been validated
by comparisonsto finite difference estimates based on the nonlinear
flow solutions. In subsonic cases, the finite difference estimates are
with 0.5% of the NISFLOW values. For the M =0.8, the compar-
ison degrades to about 3%, but some of this may be explained by
insufficient grid refinementin solving the linear sensitivity equation
and/or the nonlinear flow equation.

The comparisons with VORLAX,!” also shown in Table 1, are
somewhat worse. At the lower Mach numbers, the VORLAX val-
ues are around 6%/9% smaller in magnitude than those obtained
using QUADPAN/NISFLOW. Actually, we expect that the values
generated by VORLAX to be less accurate because VORLAX im-
plements a lifting surface panel method, that is, it is based on the
approximation that the airfoil has zero thickness.

Observe that the negative values of C,,,, indicates that the moment
produced is always in the opposite direction of the pitch rotation,
that is, damping in pitch. It also follows from the results that both
C,, and C,,, tend to increase in magnitude when the Mach number
increases.

Conclusions

A mathematical model for compressible flow about an aircraft
in generalized steady motion has been developed. This required an
extension of standard CFD methods to noninertialreference frames.
A sensitivity equationmethod applied to this formulation providesa
way to computerotary stability derivatives. The method was numeri-
cally implemented for the case of planar, two-dimensional motions,
and the pitch-rate derivatives C;, and C,,, were computed for a
NACA 0012 airfoil. The sensitivity-equationmethod is potentially
superior to the panel methods because it is valid for all ranges of
Mach numbers, including transonic flow. Also, because it is based
on the conservative form of Euler equations, it is more exact than
approximations based on the linearized potential flow equations.
The method can be extended to the three-dimensional case and to
the Reynolds averaged Navier-Stokes equations. The main virtue
of the sensitivity-equation approach is that all rotary derivatives
can be estimated based on a single solution for the nonlinear fluid
mechanics along with three linear sensitivity solutions.
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