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Aerodynamic Sensitivity Theory for Rotary Stability Derivatives

A. C. Limache¤ and E. M. Cliff†

Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

A nonlinear boundary-value problem (BVP) is developed to describe the steady compressible � ow about a
body moving with nonzero angular rates. It is shown that the most general aerodynamically steady motions are
characterized by spiral paths. A continuous sensitivity equation method is then applied to develop a linear BVP
that characterizes the sensitivity of the � ow to changes in angular velocity. The solutions to the sensitivity BVP
are used to compute rotary stability derivatives and comparisons are made to some existing methods. The virtue
of this approach is that all rotary derivatives can be estimated based on a single solution for the nonlinear � ow
equations along with three linear sensitivity equations.

Nomenclature
Cl , Cd , Cm = lift, drag, and pitching moment coef� cients
e, E = internal energy, total energy per unit mass
ê = unit vector
F, H = components of conservative � ux vector
F̄ = steady aerodynamic force function

= aerodynamic force functional
f = body force vector
M = Mach number
M̂ = pitching moment
P, T = pressure, temperature
p, q, r = body roll rate, pitch rate, yaw rate
Q = conservative� ow variable
R, Rc = gas constant, radius of circular path

= general (noninertial) reference frame
Sg , Sq , Su = � ow sensitivity with respect to g , q, and u,

respectively
= inertial reference frame

t = time
u, v, w = � ow velocity components
V , a = speed, acceleration
W = source terms
x , y, z = Cartesian coordinates
x, V, a = vector position, velocity and acceleration,

respectively
a = angle of attack
b = angle of sideslip
c = ratio of speci� c heats
g = generic physical parameter
q = air density
s = temporal variable
s
*) = shear tensor
X = inertial body force
!, x = angular velocity vector, its magnitude

Subscripts

c = predetermined point of the aircraft (usually the
center of mass)
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q, q̂ = dimensional and nondimensionalpitch rate
stability derivatives

, = reference frame ( or ) in which the variable is
measured

/ = origin of reference frame as seen from reference
frame

x , y, z = Cartesian components
a = stability derivatives with respect to angle of attack

Superscript

1 = far-� eld conditions

Introduction

T HE mechanicsof atmospheric� ight remains an interestingand
challenging subject, in part because � ight vehicles present a

number of complex dynamical components. In the present study
computational� uid dynamics (CFD), based on compressiblesteady
� ows, is used to model the external aerodynamic forces and mo-
ments on rigid aircraft. A continuous sensitivity equationmethod is
used to developa linearboundary-valueproblem(BVP) thatdirectly
leads to aerodynamicstabilityderivativesintroducedby Bryan (see,
for example, the discussion in McRuer, et al1 ) and discussed more
recently by Tobak and Schiff.2 In particular, the focus is on models
that describe how the aerodynamic forces and moments depend on
angular rates of the rigid aircraft.

The basic idea is that of a sensitivity: loosely, a linear approx-
imation of a nonlinear function. The functions of interest are the
maps that associate a � ow� eld with parameter values. For example,
it is shown how one can associate a unique � ow solution around
an airfoil with each value of its pitch rate. In general, the � ow� eld
is described as the solution of a nonlinear BVP and the parame-
ter(s) could appear in the partial differential equation and/or in the
boundary conditions. A model for the � ow� eld sensitivity is for-
mally derived by implicit differentiationof the nonlinear BVP. The
sensitivitymethod has previouslybeen applied to the calculationof
static aerodynamicderivatives3 and to geometricdesign analysis for
chemically reacting � ows.4 This work extends the approach to the
estimation of rotary aerodynamic derivatives.

It is useful to discuss the � uid mechanical models as seen from
noninertial reference frames (an inertial reference frame is a refer-
ence frame in which Newton’s laws hold). This leads to a nonlinear
BVP consisting of a nonlinear partial differential equation (PDE)
and appropriate boundary conditions. In principle, these equations
can be solved by a CFD algorithm, and the associatedaerodynamic
forces and moments on the body computedby certain weighted sur-
face integrals of the local normal (pressure) and traction forces. It
will be seen that the body angular rates appear as coef� cients in
the nonlinear BVP. The nonlinear BVP is formally differentiatedto
generate a linear BVP for the � ow sensitivity; this � ow sensitivity
re� ects the way the � ow variables will change due to a change in
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the physical parameter. These ideas are applied to determine rotary
stability derivatives by choosing the parameter to be the pitch rate.
These rotary stability derivatives are computed by a weighted inte-
gral over the body surface of the pressure sensitivity.

Preliminary Remarks
From a � ight mechanics point of view, one is interested in a de-

scription of the aerodynamic forces acting on a � ight vehicle. A
mathematical model for these forces can be developed in terms of a
nonlinear PDE with boundary conditions for the PDE that include
appropriateconditionsat the � uid/vehicle interface.With this struc-
ture in mind a generic aerodynamic force is expressed as

F (t) = (Vc( s ), a ( s ), b ( s ), p( s ), q( s ), r( s ), t ) (1)

where s is a temporal parameter going from ¡ 1 to time t . This
functional form indicatesthat the aerodynamicforces dependon the
history of the dynamic variables: speed Vc , angle of attack a , angle
of sideslip b , and the angular rates p, q, and r de� ning the particular
trajectory of the aircraft. The idea that the aerodynamic forces are
described by a functional and depend on the past history of the
motion was noted by von Kármán and Burgers.5 The classic works
of Theodorsen6 and Jones7 provided approximate representations
for this functional in the case of incompressible � ow about a thin
airfoil. More recently, Herdman and Turi8 have rigorously studied
a representationbased on neutral functional differential equations.

It is certainly possible, within some limitations, to generate nu-
merically time-accurate CFD solutions to determine the aerody-
namic forces acting on an aircraft. This has been demonstrated9 for
� ow models based on vortex-latticemethods.

More commonly, CFD approaches are restricted to the special
case wherein the aircraft is in steady, rectilinear,wings-level � ight,
that is, when the aircraft is � ying at constant values of Vc , a , and
b and with zero angular rates. In this case (assuming a steady � ow
exists) the aerodynamic forces are constant and Eq. (1) reduces to

F = F̄ (Vc , a , b , 0, 0, 0) (2)

Note that the � rst six arguments of the functional in Eq. (1) are
real-valued functions, whereas the corresponding arguments of F̄
in Eq. (2) are real numbers.

In the present study, the class of steady motions is generalized to
include motions with nonzero angular rates. This requires extend-
ing the standard CFD formulation to general noninertial reference
frames.

Fluid Motions in Noninertial Frames
In subsequentdiscussions it is assumed that the reader is familiar

with relationsamong the various (relative) positions,velocities,and
accelerations. This material may be found in standard references,
such as those of Etkin10 or Miele.11

Consider two observers, one located at the origin O of a coor-
dinate system de� ned in an inertial reference frame denoted by
and the other observer located at the origin O of a coordinate sys-
tem de� ned in a general reference frame denoted by . At a given
time t , the observer in the general reference frame will be located
at a position x / (t ) with respect to and will be moving with a
velocity

V / (t) =
dx /

dt

and an acceleration

a / (t ) =
dV /

dt

with respect to . Furthermore, at the same time, the frame may
be also rotating with instantaneous angular rate !(t ) with respect
to the inertial frame .

The equations that govern the � uid motion as seen from the ob-
server in the noninertial frame are a generalizationof the formu-
lation given by Hirsch12 (see page 16 and those that follow).

Equation of conservationof mass or continuity equation

@q

@t
+ r ¢ ( q V ) = 0 (3)

Equation of conservationof momentum

@q V
@t

+ r ¢ [q V ­ V + P
*)
I ¡

*)
s ] = q [ f + X ¡ 2! £ V ] (4)

Equation of conservationof energy

@q E

@t
+ r ¢ [( q E + P)V ¡

*)
s ¢ V ¡ kT r T] = q [ f + X ]¢ V + qv

(5)

In Eqs. (3–5), the variablesare expressedin a Eulerian (local) way
as seen from the noninertial rotating frame . In this sense, V is
the local velocity of the � ow as seen from the rotating reference
frame, and E is the total energy (per unit of mass) as seen from the
rotating frame:

E = e + 1
2 V ¢ V

Also, f is net body force and X is the pseudoforce vector

X = ¡ ! £ (! £ x ) ¡
d!

dt
£ x ¡ a /

that contains the effect of the noninertial motion (except for the
Coriolis term ¡ 2! £ V ). V ­ V is a second order tensor de� ned
in terms of its components in Cartesian coordinates as [V ­ V]i j =
[V]i[V] j , where [V]i is the i th component of the velocity vector. I

*)

is the identity tensor and
*)
s is the stress tensor; each of these is a

second-order tensor.
In the following, the subindex is dropped from the velocity

V , the position vector x , and the unit vectors êx , êy , and êz

because unless otherwise speci� ed all quantities are referred to the
noninertial frame . The vectors x , V , !, and X , when resolved
in terms of their components in the noninertial frame , will be
written simply as

x = xêx + yêy + zêz , V = uêx + vêy + wêz

! = pêx + qêy + r êz , X = X x êx + X y êy + X z êz

respectively.

Conservative Form of Two-Dimensional Flows
in Noninertial Frames

For the case of a two-dimensional � ow in the x , z plane, ! is re-
duced to ! =qêy . Additionally,assuming an inviscid, nonconduct-
ing � uid, the � ow equations (3–5) can be written in the Cartesian
coordinate system x , y, z of the noninertial reference frame in
the compact form

@Q

@t
+

@F

@x
+

@H

@z
= W

where

Q =

Q1

Q2

Q3

Q4

=

q

q u

q w

q E

(6)

is the vector of conserved quantities,

F =

q u

q uu + P

q uw

u( q E + P)

, H =

q w

q wu

q ww + P

w ( q E + P)
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are the componentsof the inviscid � uxes, and W , under the assump-
tion of no external forces, is given by

W =

0

q X x ¡ 2 q qw

q X z + 2q qu

q X x u + q X zw

(7)

It can be seen that the form of the � ow equationsin the noninertial
frame is identicalto the form in an inertialreferenceframeexceptfor
the additional source term W . By the use of this fact, a conservative
formulation is developed in exactly the same way as in CFD for
� ows in inertial reference frames. In particular, observe that the
� uxes F and H can be written in conservative form as

F =

Q2

Q2
2

Q1

+ ( c ¡ 1) Q4 ¡
Q2

2 + Q2
3

2Q1

Q2 Q3

Q1

Q2

Q1
c Q4 ¡

( c ¡ 1) Q2
2 + Q2

3

2Q1

(8)

H =

Q3

Q3 Q2

Q1

Q2
3

Q1

+ ( c ¡ 1) Q4 ¡
Q2

2 + Q2
3

2Q1

Q3

Q1
c Q4 ¡

( c ¡ 1) Q2
2 + Q2

3

2Q1

(9)

A similar fact is true for the pressure P , that is, for a calorically
perfect gas one can write

P = ( c ¡ 1)Q1 Q4 / Q1 ¡ 1
2 (Q2 / Q1)2 + (Q3 / Q1)2

These expressions are identical to the relations of the thermody-
namic variables and � uxes in terms of conservative variables in
inertial frames. The difference lies in the source term W . By the use
of Eqs. (6) and (7), the source term can also be expressedcompletely
in terms of the conservative variables and the variables describing
the motion of the reference frame, namely,

W =

0

Q1 X x ¡ 2q Q3

Q1 X z + 2q Q2

X x Q2 + X z Q3

(10)

Boundary Conditions
The boundary conditions along solid walls are different for

Navier–Stokes (viscous) � ows and for Euler � ows. In the former
case, the velocity of the � ow vanishes at solid walls, whereas in the
case of Euler � ows, there is no � ow through the wall, that is,

V ¢ n̂ = 0

In general, theboundaryconditionsappliedat the far-� eld bound-
ary are the same for Navier–Stokes and Euler � ows. Many of the
physical boundary conditions in external � ows are of the type of
matching with given far-� eld conditions Q 1 , that is,

lim
k x k ! 1

Q = Q 1

where the subscript indicates that the values of the � ow variables
at the far � eld are de� ned as seen from the inertial frame . How-
ever, because certain thermodynamic variables, density q , pressure

P , temperature T , entropy s, internal energy e, and the speed of
sound a, are scalar quantities, they are independentof the reference
frame. [Note that the speed of sound a =

p
(@P / @q )s is also a ther-

modynamic property of the state of � uid. For a thermally perfect
gas, a =

p
( c RT ).] This implies that

lim
k x k ! 1

f (x) = f 1

where f is replaced by any of the symbols {q , P, T , a, e}.
The only variable that requires special care is the � ow velocity

that depends on the reference frame because it is a vector quantity.
The velocity of interest is as seen from the noninertial reference
frame :

lim
k x k ! 1

V(x) = lim
k x k ! 1

V (x) ¡ V / ¡ ! £ x

In the case where the unperturbed air is at rest in the inertial frame
, this simpli� es to

lim
k x k ! 1

V(x) = ¡ V / ¡ lim
k x k ! 1

! £ x

which written in components reads

lim
k x k ! 1

u

v

w

= lim
k x k ! 1

¡ u / ¡ (qz ¡ r y)

¡ v / ¡ (rx ¡ pz)

¡ w / ¡ ( py ¡ qx)

(11)

From theseone can deduce the far-� eld conditionsfor the conserved
variables, which are applied computationally at large k xk , for ex-
ample, k xk equals 20 chord lengths.

Kinematics of Steady Motion
The propertyof steadiness in a � uid motion dependson a number

of issues including the choice of observer. Commonly, the vehicle
is translating at a constant velocity without rotating, and one uses
a Galilean transformation to view the � uid motion from the pilot’s
point of view; in this setting, the vehicle is in a steady motion. In
the following this result is generalized to include rotationalmotion.

Consider the vector Vc that describes the translationalvelocityof
a speci� ed point on the aircraft (usually the center of mass) with
respect to a � xed observer in the inertial reference frame , where
the undisturbed air is assumed to be at rest. Note that the quantities
Vc , a , and b are scalars so that their rates of change are independent
of the reference frame. For vector quantities,such as Vc, the rates of
change in two reference frames are related by the standard Eulerian
formula

dVc

dt
=

dVc

dt
+ ! £ Vc (12)

where ! is the angular velocity of frame with respect to frame .
For an aerodynamicallysteady motion the aerodynamicangles a

and b must remain constant and this implies 1) that the orientation
of any body frame is � xed with respect to the wind-frame and 2)
that the velocity of the body frame with respect to the inertial frame
is a � xed vector in the body frame.

From the � rst, onededucesthat thebodyframeand thewind frame
have the same angular velocity with respect to the inertial frame.
Furthermore, in a steady motion, the components of the angular
velocity are constant, and this implies that d! /dt =0.

The second conclusion means that

dVc

dt
= 0
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and this, combinedwith Eq. (12), leads to a simple system of linear,
constant-coef�cient, ordinary differential equations for the compo-
nents of Vc in the inertial frame:

dVc

dt
= ! £ Vc (13)

System (13) can be integrated to yield

uc (t )

vc (t)
wc (t )

= Vc0 ¢
!

x

!

x
+ Vc0 ¡ Vc0 ¢

!

x

!

x
cos( x t )

+
!

x
£ Vc0 sin( x t ) (14)

A second integration gives the inertial-frame position components
as

xc (t)

yc (t)

zc (t)

=

xc0

yc0

zc0

+ Vc0 ¢
!

x

!

x
t

+ Vc0 ¡ Vc0 ¢
!

x

!

x

sin( x t )
x

¡
!

x
£ Vc0

cos( x t )
x

(15)

Equations(14)and (15) are a parametricdescriptionof a spiral.Note
that Eq. (14) includes a constant component along the direction
e x ´ ! / x and a harmonic part. The constant vector multiplying
cos( x t ) in Eq. (14) is the orthogonal complement of the constant
part, whereas the constant vector multiplying sin( x t ) is orthogonal
to the plane spanned by {Vc0 , ex }. The magnitude of the vectors
in the harmonic part are, in fact, equal. This means that such spiral
motionsare the most generalmotionof an aircraft for which a steady
description is possible. For a related discussion, see the classical
book by von Mises.13

Two-Dimensional Steady Motions
As an exampleof the generalformulationjustdescribed,attention

is restricted to the forces on an airfoil in inviscid � ow. In the usual
case the airfoil is in simple rectilinear motion with zero angular
rates. Obviously, the � ow will be two dimensional, and a standard
CFD code for steady� ow can be used to determinethe aerodynamic
forces [cf. Eq. (2)].

F = F̄ (Vc , a , 0, 0, 0, 0) (16)

In particular, the lift Cl (M , a ), drag Cd (M , a ), and pitching mo-
ment Cm (M , a ) coef� cients can be calculated for different values
of speed (or Mach number M ) and angle of attack. Examples of
these calculationusing CFD are shown in Figs. 1 and 2 for a NACA
0012 airfoil. The general streamline pattern and the pressure con-
tours are shown for a Mach number M = 0.1 (Fig. 1) and for a Mach
number M = 0.8 (Fig. 2) at angleof attack a = 0. The CFD program
that was used here is referred to as the Class Code; it is based on a
� nite volume formulation on unstructured grids and was provided
by Kyle Anderson from NASA Langley Research Center.

Observe that with this code one could determine the stability
derivatives (Cl j , Cd j , Cm j j 2 {M , a }) of the aerodynamic forces
and moments with respect to the angle of attack a and � ight Mach
number M (or speed Vc ) by � nite differences. For example, Cl a
could be calculated by using two � ow solutions so that

Cl a = [Cl (M , a + 4 a ) ¡ Cl (M, a )]/ 4 a

Alternatively, such static aerodynamic stability derivatives can be
evaluated by a sensitivity equation approach, as done by Godfrey
and Cliff.3 The sensitivity approach is computationally cheaper in
the sense that it will require only one nonlinear � ow solution plus
solvinga linearPDE, instead of the two nonlinearsolutionsrequired
in � nite differences.

On the other hand, because the Class Code and the sensitivity
formulation developed by Godfrey and Cliff3 are both based in an

Fig. 1 Pressure contours and streamlines for � ow around a NACA
0012 airfoil at M = 0.1 and ® = 0.0 deg.

Fig. 2 Pressure contours and streamlines for � ow around a NACA
0012 airfoil at M = 0.8 and ® = 0.0 deg.

inertial formulation,where the airfoil is not allowed to pitch, neither
can be used to evaluate the pitch-rate derivativesClq , Cdq , and Cmq .
To estimate such terms, it is necessary to account for the possibility
of nonzeropitch rates q by � nding the appropriatesteady motion of
the airfoil in a planar motion but with nonzero pitch rates.

Note that the general steady motion discussed in the preceding
section can be restricted to the case where ! and V0 are orthogonal.
In this case, Eq. (15) reduces to (modulo the initial position)

xc (t )
yc (t )

zc (t )
=

Vc0

x
sin( x t) ¡

!

x
£

Vc0

x
cos( x t )

Moreover, the constant vector multiplying sin( x t) has the same
magnitude as that multiplying cos( x t ) and is orthogonal to it. It is
clear that the motion is planar, and in fact it follows a circular path,
as shown for the aircraft in Fig. 3. In this case the motion has the
following features:

1) The radius of the circular path Rc is related to the pitch rate
and the speed of the aircraft through Vc = Rcq.

2) The aircraft experiences a centripetal acceleration

ac = V 2
c Rc
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Fig. 3 Aircraft � ying in a circular path with constant pitch rate q and
constant angle of attack ®.

which is normal to the velocity vector. This guarantees that the
aircraft is not changing its speed.

3) From the pilot’s view the � ow motion is steady.
However, the use of the standard (inertial) CFD equations is not

valid. The two-dimensionalCFD formulation in general noninertial
reference frames, as described earlier, is needed. This generalized
two-dimensional CFD formulation is also used to develop a sensi-
tivity formulation for the calculation of rotary stability derivatives.
The case of planar motion that only can be applied to calculate sta-
bility derivatives with respect to a pitch rate q is considered. The
ideas presented can be extended to the three-dimensional case to
calculate the whole set of rotary derivatives, that is, derivatives in
roll p, pitch q , and yaw r .

Flow Sensitivity Equations
In this section the equationsfor the � ow sensitivitieswith respect

to a general parameter g is described. The parameter could modify
the far-� eld conditions, the � ow equations, or both. For simplicity
it is assumed that the parameter does not modify the shape of the
aircraft or any other boundary geometry, and attention is restricted
to two-dimensional Euler � ows, that is, the � uid is inviscid and
nonheat conducting.

Because the state of a two-dimensional Euler � ow is completely
de� ned in terms of the four conservedquantities (6), then the sensi-
tivitiesSg of theconservedquantitiesQ with respectto theparameter
g will be a vector with four components:

Sg 1

Sg 2

Sg 3

Sg 4

= Sg =
@

@g
Q(x, t; g ) =

@Q1(x, t; g )
@g

@Q2(x, t; g )
@g

@Q3(x, t; g )

@g

@Q4(x, t; g )

@g

(17)

From the � ow equations it is possible to determine the differential
equation satis� ed by the sensitivity vector Sg .

Observe that if the sensitivities of the conserved variables are
known, then the sensitivities of any of the primitive variables

{q , P, e, T , u, w} can be calculated. For example, the sensitivity
Su of the x component of the velocity can be determined from

Su =
@u

@g
=

@Q2 / Q1

@g
= ¡

Q2

Q2
1

@Q1

@g
+

1
Q1

@Q2

@g

Note that the � ux functions F and H depend explicitly on Q
only. The dependence on x, t , and g is through the chain rule. The
source-term W may depend on g explicitly, as well as implicitly
through Q. Taking the derivative of the � ow equation with respect
to the parameter g , one � nds

@

@g

@

@t
Q +

@

@g

@

@x
F(Q) +

@

@g

@

@z
H (Q) =

@

@g
W (Q; g )

Because the spatial coordinates x and the time t are independent
of the g parameter, and assuming certain smoothness, the order of
differentiationcan be interchanged

@

@t

@

@g
Q +

@

@x

@

@g
F(Q) +

@

@z

@

@g
H (Q) =

@

@g
W (Q; g ) (18)

Differentiating � ux expression (8) with respect to g by using the
chain rule leads to

@

@g
F[Q(x, t ; g )] = r Q F ¢

@Q

@g
(x, t ; g )

where r Q F is the Jacobian of F with respect to the conserved
quantities Q. Similar expressions for the conservative � ux H can
be derived, and using de� nition (17), Eq. (18) is rewritten as

@Sg

@t
+

@

@x
[r Q F ¢ Sg ] +

@

@z
[ r Q H ¢ Sg ] =

@

@g
W (Q; g ) (19)

For the term (@/ @g )W (Q; g ), Eq. (10) is formally differentiated:

@

@g
W =

0
@Q1

@g
X x ¡ 2q

@Q3

@g

@Q1

@g
X z + 2q

@Q2

@g

X x
@Q2

@g
+ X z

@Q3

@g

+

0

Q1
@X x

@g
¡ 2

@q

@g
Q3

Q1
@X z

@g
+ 2

@q

@g
Q2

@X x

@g
Q2 +

@X z

@g
Q3

As a consequence,

@

@g
W [Q(x, t ; g ); g ] = WA[Q(x, t ; g ); g ] ¢ Sg + WB[Q(x, t ; g ); g ]

(20)
where

WA(Q; g ) =

0 0 0 0

X x 0 ¡ 2q 0

X z 2q 0 0

0 X x X z 0

(21)

and

WB (Q; g ) =

0

Q1
@X x

@g
¡ 2

@q

@g
Q3

Q1
@X z

@g
+ 2

@q

@g
Q2

@X x

@g
Q2 +

@X z

@g
Q3

(22)
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With the substitution of Eq. (20) into Eq. (19), it follows that the
sensitivities Sg satisfy

@Sg

@t
+

@

@x
[ r Q F ¢ Sg ] +

@

@z
[r Q H ¢ Sg ] = WA ¢ Sg + WB (23)

If this is solved with the appropriate boundary conditions, the � ow
sensitivity Sg can be determined. Whereas equation (23) may seem
complicated, it is, in fact, a linear PDE. Observe that the Jacobians
r Q F and r Q H are known functions of the � ow solution and inde-
pendent of the sensitivities, as are the matrices WA and WB .

Rotary Stability Derivatives
As an example of the use of the sensitivity equation method in

� ight mechanics, the � ow sensitivity with respect to the pitch rate
is determined. From Eq. (23) the sensitivityvector for the pitch rate
q satis� es the linear PDE,

@Sq

@t
+

@

@x
[ r Q F ¢ Sq ] +

@

@z
[r Q H ¢ Sq ] = WA ¢ Sq + WB (24)

where WA is given by Eq. (21) and WB (Q; q) from Eq. (22) is given
by

WB (Q; q) =

0

Q1
@X x

@q
¡ 2Q3

Q1
@X z

@q
+ 2Q2

@X x

@q
Q2 +

@X z

@q
Q3

(25)

The general vector relationship for X is

X ´ ¡ ! £ (! £ x ) ¡
d!

dt
£ x ¡ a /

and for the two-dimensional case treated here, this reduces to

X x

X z
=

q2x ¡ qwc

q2z + quc

Thus, expression (25) becomes

WB (Q; q) =

0

Q1(2qx ¡ wc) ¡ 2Q3

Q1(2qz + uc) + 2Q2

(2qx ¡ w c)Q2 + (2qz + uc)Q3

(26)

Note that, when calculating the pitch-rate derivatives in the case
of steady, straight, and level � ight (p =q =r =0), the term WA

vanishes and WB in Eq. (26) reduces to

WB(Q; 0) =

0

¡ Q1wc ¡ 2Q3

Q1uc + 2Q2

¡ wc Q2 + uc Q3

Once the linear problem posed by Eq. (24) is solved, the pressure
sensitivity @P / @q is available at any point in the � ow� eld. In the
case of Euler � ows, this is suf� cient to calculate the sensitivities
of each of the aerodynamic forces and moments with respect to
the pitch rate. For example, the pitching moment is computed by
the following weighted integral of the pressure P around the body
surface R :

M̂ =
R

[x £ ¡ Pn̂]y d r

It follows then that the sensitivity of the pitching moment with
respect to the pitch rate (@M̂ / @q) is given by

@M̂

@q
= ¡

R

@P

@q
[x £ n̂]y d r (27)

Observe that all of the proceduresused to compute the aerodynamic
forcescan be used to compute their sensitivitiesby simply replacing
the pressure by the pressure sensitivity.

Numerical Results: Pitch-Rate Sensitivity
A solution procedure for the two-dimensional sensitivity equa-

tion (24) was implemented using a � nite volume formulation. The
NISFLOW code can calculate sensitivitieswith respect to the angle
of attack a , the Mach number M , and the pitch rate q. The same
unstructured grid that was used for the � ow solution was used to
compute the � ow sensitivities. Note that, although it may be con-
venient to solve the sensitivity equation using the same scheme and
discretizationas for the nonlinear � ow, it is not necessary to do so.
Indeed, when using adaptive grid technology, one should be aware
that an acceptable re� nement for the � ow problem may not be ac-
ceptable for the sensitivity problem.14

Figures 4–7 show some of the pitch-rate � ow sensitivities results
for the case of a NACA 0012 airfoil at several different Mach num-
bers and at a =0.0 deg. The calculations were performed around
q =0, so that the � ow solutions required to calculate the source
term WB and the Jacobians of F and H in the sensitivity equation
were simply extracted from the Class Code. This implies that for
the required � ow solutions a standard (inertial) CFD formulation
can be used. The origin of coordinates of the body-� xed reference
frame was chosen to be at the leading edge.

In Fig. 4 the pitch-rate pressure sensitivity contours and the ve-
locity sensitivity streamlines are shown for a NACA 0012 airfoil
at M =0.1; these � ow sensitivities were computed using the � ow
solution shown in Fig. 1. The pressure sensitivitiesmeasurehow the
pressure is going to vary if the airfoil tends to rotate nose up (posi-
tive q). Similarly, the velocity sensitivity streamlines indicate how
the velocities are going to change if the airfoil tends to move nose
up. Observe that for a positive q the pressure tends to decrease on
the airfoil’s upper surfacewhile it tends to increaseon the lower sur-
face. From this we expecta positive(upward) Clq . From the velocity
sensitivity streamlines, we see that near the upper surface the � ow
tends to accelerate while in the lower surface tends to decelerate;
also the stagnation point tends to move to the lower surface.

In Fig. 5, a zoom-out of the sensitivity � eld is shown to display
the pressure sensitivity and velocity sensitivity streamlines in the

Fig. 4 Pitch-rate pressure sensitivity contours and velocity sensitivity
streamlines for a NACA 0012 airfoil at M = 0.1 and ® = 0.0 deg.
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Fig. 5 Pitch-rate pressure sensitivity contours and velocity sensitivity
streamlines for a NACA 0012 airfoil at M = 0.1 and ® = 0.0 deg (wide
view).

Fig. 6 Pitch-rate pressure sensitivity contours and velocity sensitivity
streamlines for a NACA 0012 airfoil at M = 0.5 and ® = 0.0 deg.

far � eld. Observe that the pressure sensitivity goes to zero at the
far � eld. This is expected because airfoil pitch motions should not
change the air pressure in the far � eld. Also observe that the sen-
sitivity streamlines tend to be concentric circles with center at the
origin of coordinates,that is, at the airfoil’s leading edge. This phe-
nomenon is also expected and can be proved mathematically by
differentiating the boundary conditions (11) with respect to q. Ob-
serve that for a positivepitchq, that is, a pitch in the clockwise sense
the far-� eld sensitivity streamlines run counterclockwise.Note that
the � nitevolumesensitivityformulationallowsone to treat the range
of subsonic, supersonic, and transonic speeds. In Figs. 6 and 7 the
pitch-rate pressure sensitivity and the pitch-rate velocity sensitivity
streamlines of the same airfoil are shown but at the higher Mach
numbers M =0.5 and 0.8, respectively.The main featuresof the re-
sulting pressure sensitivity and velocity sensitivity streamlines for
the case M =0.5 are similar to the low subsonic case.

The case M =0.8 corresponds to a transonic � ow. In particular,
as shown in Fig. 2, at a =0.0 deg, a shock exists on both the upper
and lower surfaces of the airfoil, and by symmetry the shocks are
locatedat the same locationalongthechord.From thecorresponding
pressure sensitivity shown in Fig. 7, it can be seen that on the upper

Table 1 Computed pitch-rate derivatives

Coef� cient NISFLOW QUADPAN VORLAX

M = 0.1
Clq 10.337 10.097 9.425
Cmq ¡ 3.489 ¡ 3.424 ¡ 3.151

M = 0.5
Clq 11.847 11.314 10.792
Cmq ¡ 3.968 ¡ 3.825 ¡ 3.611

M = 0.8
Clq 21.889 15.713 15.408
Cmq ¡ 8.884 ¡ 5.333 ¡ 5.167

Fig. 7 Pitch-rate pressure sensitivity contours and velocity sensitivity
streamlines for a NACA 0012 airfoil at M = 0.8 and ® = 0.0 deg.

surface, between the leading edge and some distance before the
shock location, the expected change in pressure is a more or less
uniform pressure drop. On the lower surface, the expected change
is a more or less uniform pressure increase. On the other hand, on
the upper surface, near the shock location the expected change is
a large pressure drop. This is an indication that the shock moves
toward the trailing edge. The opposite phenomenon occurs on the
lower surface where the pressure sensitivity is large and positive.
This means that the lower-surface shock moves toward the leading
edge.Note that theantisymmetryobservedin the pressuresensitivity
contours with respect to the x axis is a special phenomenon that
only occurs at a =0.0 deg due to the symmetry of the airfoil and
the symmetry of the � ow solution at that angle of attack.

Table 1 shows a comparison of the nondimensional pitch-rate
derivativesClq = @Cl / @q̂ and Cmq = @Cm / @q̂ obtained for the three
different Mach numbers, M = 0.1, 0.5, and 0.8, at a =0.0 deg.
The nondimensional pitch rate q̂ is de� ned to be q̂ = qc̄/ 2Vc and,
for example, the pitch-damping parameter Cmq is computed by
nondimensionalizing the pitch moment sensitivity [Eq. (27)] in
the usual way. To validate the results, Table 1 also shows the
same aerodynamicderivativescalculatedusing QUADPAN15,16 and
VORLAX,17 which are panel methods and were developedat Lock-
heed. Both methods are based on potential � ow formulations to
estimate the local velocity, and they recover the pressure from ap-
proximations to the isentropic, compressible Bernoulli equation.

The results show good agreement between QUADPAN and NIS-
FLOW at M = 0.1 and 0.5. The difference in Clq is around 2–3% at
M = 0.1 and increases to 4–5% at M =0.5. For Cmq the difference
is less than 2% at M =0.1 and increases slightly to less than 4% at
M = 0.5. This small difference may be due to inaccuracies of the
discretizationand/or to the different approaches used in simulating
the pitching motion effect. The estimates at M =0.8 are quite dif-
ferent. One explanation is that VORLAX and QUADPAN cannot
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model embedded shocks, whereas it is clear from the � ow solution
(see Fig. 2) that at M =0.8 there is an embedded shock. In addi-
tion, the NISFLOW results shown in Table 1 have been validated
by comparisons to � nite differenceestimates based on the nonlinear
� ow solutions. In subsonic cases, the � nite difference estimates are
with 0.5% of the NISFLOW values. For the M =0.8, the compar-
ison degrades to about 3%, but some of this may be explained by
insuf� cient grid re� nement in solving the linear sensitivityequation
and/or the nonlinear � ow equation.

The comparisons with VORLAX,17 also shown in Table 1, are
somewhat worse. At the lower Mach numbers, the VORLAX val-
ues are around 6%/ 9% smaller in magnitude than those obtained
using QUADPAN/NISFLOW. Actually, we expect that the values
generated by VORLAX to be less accurate because VORLAX im-
plements a lifting surface panel method, that is, it is based on the
approximation that the airfoil has zero thickness.

Observe that the negativevaluesof Cmq indicatesthat the moment
produced is always in the opposite direction of the pitch rotation,
that is, damping in pitch. It also follows from the results that both
Clq and Cmq tend to increase in magnitude when the Mach number
increases.

Conclusions
A mathematical model for compressible � ow about an aircraft

in generalized steady motion has been developed. This required an
extensionof standardCFD methods to noninertial reference frames.
A sensitivityequationmethodapplied to this formulationprovidesa
way to computerotary stabilityderivatives.The methodwas numeri-
cally implemented for the case of planar, two-dimensionalmotions,
and the pitch-rate derivatives Clq and Cmq were computed for a
NACA 0012 airfoil. The sensitivity-equationmethod is potentially
superior to the panel methods because it is valid for all ranges of
Mach numbers, including transonic � ow. Also, because it is based
on the conservative form of Euler equations, it is more exact than
approximations based on the linearized potential � ow equations.
The method can be extended to the three-dimensional case and to
the Reynolds averaged Navier–Stokes equations. The main virtue
of the sensitivity-equation approach is that all rotary derivatives
can be estimated based on a single solution for the nonlinear � uid
mechanics along with three linear sensitivity solutions.
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